martes, 31 de marzo de 2020

TODAY´S TASK:
FACTORISED EQUATIONS are explained on page 62. Check the explanation, and do in your notebook:
Exercise 14: a), b) and f) (page 71) Exercise 15: a) and c) (page 62)

lunes, 30 de marzo de 2020



TODAY´S TASK:
IRRATIONAL EQUATIONS are explained on page 60 of the book. Check the explanation, lthe two SOLVED EXERCISES 1 and 2 and do in your notebook:
Exercise 6: a), c) and d) (page 60)
Exercise 6: a), b) and c) (page71)
You have the solutions of Unit 3 in this blog, they are explained step by step hence my advise is that you use them to revise your work. If you need more explanations feel free to send me an email and I will help you

sábado, 28 de marzo de 2020


If you want to investigaste how to solve EXPONENTIAL EQUATIONS this weekend here you have one helpful video:

EASY EXPONENTIAL EQUATIONS

Good morning! 
This week we are going to solve all types of EQUATIONS. Your task is here, you have all week to do it:

viernes, 27 de marzo de 2020


Good morning 4º ESO A!
Here you have a different way to solve RATIONAL EQUATIONS, just in case you find difficulties by solving them like we use to:
             Example: 


miércoles, 25 de marzo de 2020


While I was checking your homework, I realised that yo have to practise a little bit more with the RATIONAL EQUATIONS
The problem is that most of yo are having difficulties finding out the common denominador in each equation.
So, I recommend you to do the following exercises of your text-book and, after that revise your solutions:





Here you have the solutions of your text-book´s exercises





martes, 24 de marzo de 2020


STEPS TO SOLVE A RATIONAL EQUATION

Let´s solve the last equations of your homework
            Equation:

          Equation:



domingo, 22 de marzo de 2020

EQUATIONS
Rationals Equations
To solve these equations yo have to do correctly the following operations with polynomials and algebraic fractions:



How to solve RATIONAL EQUATIONS? Watch the following videos






sábado, 21 de marzo de 2020


 If you want to practise with polynomials and algebraic fractions,  here you have this link
                                                      http://www.minimath.net/index_es.htm

You can try to do on your note.ook these exercises and check your results with this instrument (not nneded to say that the more you prctise the more you learn)
Exercise 1
Simplify
Exercise 2
Operate, previously reducing to common denominators (help) and after that simplify the results
                   
Exercise 3
Operate and simplify
              
Exercise 4
Multiply or divide these fractions but, first of all decompon each polynomial in prime factors:






jueves, 19 de marzo de 2020


 We´re going to revise how to find out polynomials´Least Common Factor (or LCD or GCM = Great Common Multiple) in order to add/substract algebraic fractions with unlike denominators:
                                                Great C. Factor o Denominator














                                           


                           
 Adding/substracting fractions


























More information:
                          
                                         Adding/substracting Rational Expressions (ppt)

miércoles, 18 de marzo de 2020

EQUATIONS REVIEW
  • Today, I give you some solved exerxises and you do the rest of each type
  • Don´t forget to write ALL (and I mean ALL) in your note-book.
  • At the end of the class or at the end of the day you have to send me to our classroom your work done in the note-book scanned or by photo.
  • Each day I will revise your work and I´ll take note of it
First and Second Grade Equations

  Exercise 1












Exercise 2
 

Exercise 3                    Incomplete Second grade Equations














                                          Polynomial Equations
Exercise 4              






















Exercise 5





















Biquadratic Equations


Exercise 6



























martes, 17 de marzo de 2020

Homework 17/3/2020

ADDING AND SUBSTRACTING ALGEBRAIC FRACTIONS


MULTIPLYING AND DIVIDYNG ALGEBRAIC FRACTIONS


sábado, 14 de marzo de 2020


Hola a todos!
Como tenemos este blog para seguir con la asignatura, por el momento será el instrumento que utilizaré para que sigamos trabajando.
Sé que estáis deseando empezar con las ecuaciones, pero nos quedamos terminando de explicar las operaciones con las fracciones algebraicas. Os voy a preparar unos ejercicios, dentro de un rato los subo al blog. Si queréis cuando los terminéis, les hacéis una foto y la mandáis a mi correo para que os la corrija.
Todavía no nos han dado instrucciones de cómo evaluaros así que, por ahora,  todo lo que hagamos será principalmente para seguir aprendiendo los contenidos de Matemáticas del curso.
Ah! Cualquier sugerencia que os parezca interesante además del uso del blog me lo indicáis (métodos digitales utilizados en otras asignaturas, google classroom, skipe, videos , ...)

domingo, 8 de marzo de 2020


    ALGEBRAIC FRACTIONS











EXERCISES






     Remember:

   Roots of a Polynomial 

are the values that nullify the polynomial

     Properties of roots and factors


   How to Factor a Polynomial

martes, 3 de marzo de 2020



HOMEWORK

Greatest common divisor (g.c.d) or hcf of two polynomials are highest degree common divisor of both polynomials. Is the product of the common factors of both polynomials to the less exponent
Example:      G.C.D of polynomials  P(x) = 2x2-x-1   and   Q(x) = 4x2+8x+3:
                           

                            P(x)=2x2-x-1=(2x+1)(x-1)
                           
 Q(x)=4x2+8x+3=(2x+1)(2x+3) 
In both polynomial only (2x+1) is only common divisor with least exponent 1
so GCD of p(x) and q(x) is (2x+1)

GCD = 2x + 1

Least common multiple (l.c.m) of two polynomials are common and uncommon factors raised to the highest exponents:

Example:       L.C.M of Polynomials  P(x) =18x4-36x3+18x2  and  Q(x) = 45x6-45x3
                           
                        P(x)=2.32x2(x-1)2
                         Q(x)=325x3(x-1)(x2+x+1)


In both polynomials irreducible factors are 2, 3, 5, x, (x-1) and (x2+x+1). 
So LCM =213251x3(x-1)2(x2+x+1)

LCM =90x3(x-1)2(x2+x+1)